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Abstract

We investigate adaptive finite element methods for low Mach, steady, laminar combustion. The finite element

discretization of the flame equations involves least squares control of streamline derivatives and pressure–velocity

coupling as well as a new shock capturing term based on nonlinear crosswind diffusion yielding a suitable discrete

maximum principle for the discrete solution. A posteriori error estimates derived from the dual weighted residual

method are used to refine the mesh adaptively. Numerical results are presented for a Bunsen flame with simple

chemistry on locally refined as well as fully unstructured Delaunay meshes. Solution quality is evaluated in terms of

overall flame characteristics – including length, lift off and width – as well as undershoots in species and temperature

profiles.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The numerical computation of reactive flows is a challenging field of research with many applications in

science and engineering. Most combustion applications involve strongly nonlinear phenomena, such as
reaction fronts, boundary layers, turbulence or shocks. The computational work involved in flame simu-

lations is extremely high because of the wide spectrum of spatial and time scales to be resolved, the large

number of degrees of freedom and strong nonlinearities resulting from chemical reactions.

The goal of this paper is to derive suitable numerical methods for flame simulation. Targeted combustion

applications are low Mach, steady, laminar flames such as those encountered in Bunsen flames and other

commercial burners. Key issue in a numerical method is reliability: once an approximate solution has been
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obtained, there should be a computable estimate of the numerical error indicating whether or not the

computed solution meets the user�s accuracy requirements. An additional important feature of a numerical
method is efficiency, i.e., to achieve reliability at low computational costs.

An attractive approach to achieve efficiency in flame simulations is to resort to adaptive methods where

the computational mesh adjusts itself to fit the nature of the numerical solution. A first strategy for adaptive

mesh refinement relies on one-dimensional mesh equidistribution using local estimates of the gradient and

curvature of the numerical solution as error indicators [11,26]. This methodology has been applied to steady

[13,16,22,28,33] and unsteady [15,31,30] flame simulations. Recent developments include local rectangular
refinement techniques with finite difference discretizations [8,9]. In most applications involving several

nonlinear partial differential equations (PDEs), the error indicators lack theoretical justification and

therefore strongly rely on problem oriented heuristics. Another drawback is that no reliable criterion for

stopping the simulation is available due to the lack of computable estimates of the actual numerical error.

One alternative approach toward adaptive error control has been developed recently in the framework of

finite element methods and optimal control techniques [5,6]. Let u be the exact unknown solution and uh a
numerical approximation. Given a functional Jð�Þ representing the physical quantities that the user wishes
to control, an upper bound for JðuÞ � JðuhÞ is obtained using the dual weighted residual method. The
estimate involves the residual, defined as the numerical solution reinjected into the differential equation,

and appropriate weight factors. Such factors, which can also be interpreted as sensitivity coefficients, are

computed from the solution of a linearized dual problem and provide information on where the error is

actually generated. The dual weighted residual method exploits the Galerkin orthogonality in deriving the

local weights. This property is satisfied by finite element approximations but usually not by standard finite

difference or finite volume discretizations. The dual weighted residual method offers the important ad-

vantage to address both reliability and efficiency. Indeed, it provides a reliable criterion for stopping the

simulation and it also yields practical information for adaptive mesh refinement. Since the error estimator is
expressed as a sum over all mesh elements, a refinement/derefinement algorithm can be readily set up for

instance by equidistributing the element contributions. This method has been applied to combustion

problems in [1,7]. Linear quadrangular finite elements with streamline and velocity–pressure stabilization

were used on adaptively refined meshes with local tensor product structure and hanging nodes.

In this paper, we present an adaptive finite element method to simulate low Mach, steady, laminar

flames. The flame equations are discretized with linear simplicial conforming elements on either hierar-

chical, locally refined or fully unstructured, Delaunay meshes. We consider a stabilized finite element

method providing least squares control of streamline derivatives for species, temperature and velocities and
of pressure–velocity couplings in low Mach flows where the same polynomial order is used to discretize

both variables. We also consider a new shock capturing term based on a nonlinear crosswind diffusion

operator ensuring a suitable form of the discrete maximum principle for temperature and species profiles

[2].

The paper is organized as follows. In Section 2 we present the governing equations. The stabilized finite

element discretization is presented in Section 3. Section 4 describes the dual weighted residual method for

adaptive mesh generation. Both theoretical and practical aspects are discussed. Finally, computational

results are presented in Section 5. We investigate solution quality in terms of undershoots for temperature
and species profiles, flame length, lift off and width. Various shock capturing techniques based on crosswind

diffusion are compared.

2. Governing equations

This work focuses on low Mach, steady, laminar flames such as those arising in Bunsen and other

commercial burners (see Fig. 1). A premixed fuel/air jet is flown through a cylindrical tube surrounded by
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an air coflow. When the jet velocity exceeds the planar flame speed, it is possible under certain experimental
conditions to stabilize a flame of conical shape sitting above the burner lip.

Since the flow velocity is much smaller than the sound speed, we approximate the fully compressible flow

equations using the isobaric flame model [21,29,36]. The pressure is split into a thermodynamic part and a

spatially varying hydrodynamic perturbation which scales as the square of the Mach number. For through-

flow problems, the thermodynamic pressure is constant in the computational domain and is specified by the

outflow conditions. Density changes only occur because of temperature variations due to strong heat re-

lease at the flame front. In addition, viscous dissipation and hydrodynamic pressure work can be neglected

in the energy conservation equation.
The governing equations express conservation of species mass, momentum and energy. The unknowns

are written as u ¼ ðY1; . . . ; Yns; T ; v1; . . . ; vd ; pÞ where ðY1; . . . ; YnsÞ are the species mass fractions, ns the
number of species, T the temperature, v ¼ ðv1; . . . ; vdÞ the velocity components, d the number of space
dimensions and p the hydrodynamic pressure. Because of overall mass conservation, the species mass
fractions are not independent. In flames where one of the chemical species is present as a dilutant over the

whole computational domain (typically nitrogen from air), a well-known approach is to consider the ns
species mass fractions as independent unknowns and to substitute the constraint

Pns
l¼1 Yl ¼ 1 to the dilutant

conservation equation. Assuming for simplicity that the dilutant is the last chemical species, the governing
equations expressed in nonconservative form read

elðuÞ :¼ bl � rYl þr �Fl � xl ¼ 0; 16 l6 ns� 1;

ensðuÞ :¼
Xns
l¼1
Yl � 1 ¼ 0;

ensþ1ðuÞ :¼ bnsþ1 � rT þr � Q� xT ¼ 0;
ensþ1þjðuÞ :¼ bnsþ1þj � rvj þ ojp þ ðr �VÞj � qgj ¼ 0; 16 j6 d;

ensþdþ2ðuÞ :¼ r � ðqvÞ ¼ 0;

ð1Þ

where oj denotes derivation along the jth spatial coordinate and r ¼ ðo1; . . . ; odÞt the gradient operator. In
addition, Fl denotes the mass diffusion flux of the lth species, xl its mass production rate, Q the thermal
part of the heat flux, xT the temperature source term, V the viscous stress tensor, ðr �VÞj the jth com-
ponent of its divergence, gj the jth component of the gravity vector and q the density given by the ideal gas
law

Fig. 1. Schematic of a Bunsen flame with computational domain as well as possible subdomain to be used in the error output

functional (not in scale).
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q ¼ p0m
RT

; ð2Þ

where p0 is the thermodynamic pressure, m the mean molecular weight of the mixture given by

m ¼ ð
Pns

l¼1 Yl=mlÞ
�1
, ml the molecular weight of the lth species and R the universal gas constant. The

quantities bi for i 6¼ nsþ 1 are mass fluxes given by bi ¼ qv, while we have bnsþ1 ¼ qcpv where cp is the
mixture specific heat capacity at constant pressure. The species and temperature source terms xl and xT are
given by Arrhenius type expressions and depend exponentially on the temperature. These terms will be

detailed in Section 5.1.

The transport fluxes Fl, Q and V read

Fl ¼� dlrYl; 16 l6 ns� 1;
Q ¼� krT ; ð3Þ

V ¼� l rv
�

þrvt � 2
3
ðr � vÞI

�
;

while the last species flux ensures overall mass conservation in the form
Pns

l¼1Fl ¼ 0. Here, dl is the dif-
fusion coefficient for the lth species, k the thermal conductivity and l the shear viscosity. The numerical
evaluation of these coefficients is discussed in Section 5.1. It is worthwhile to point out that the expressions

(3) have been derived under some simplifying assumptions. The volume viscosity is not included in the
viscous stress tensor since for low Mach flows it can be treated as a perturbation of the hydrodynamic

pressure. Furthermore, although Soret and Dufour effects are important in some flame structures [19],

thermal diffusion coefficients have been neglected for the sake of simplicity. Finally, the mass diffusion

fluxes have been taken in the dilution limit in terms of mass fraction gradients. The domain of validity of

this assumption is discussed in [18,21].

The flame model consists of nc ¼ nsþ d þ 2 coupled nonlinear PDEs equipped with appropriate
boundary conditions. In abstract form, its weak formulation reads: find u 2 V such that

aðu;uÞ ¼ 0 8u 2 V ; ð4Þ

where V is a suitable subspace of H 1ðXÞnc. Proper modifications of V accounting for Dirichlet boundary
conditions are not detailed for brevity. We have

aðu;uÞ ¼
Xnc
i¼1

ðr0i ðuÞ;uiÞ þ ðr1i ðuÞ;ruiÞ;

with the residual expressions

r0l ðuÞ ¼ bl � rYl � xl; r1l ðuÞ ¼ �Fl; 16 l6 ns� 1;

r0nsðuÞ ¼
Xns
l¼1
Yj � 1; r1nsðuÞ ¼ 0;

r0nsþ1ðuÞ ¼ bnsþ1 � rT � xT; r1nsþ1ðuÞ ¼ �Q; ð5Þ
r0nsþ1þjðuÞ ¼ bnsþ1þj � rvj þ ojp � qgj; r1nsþ1þjðuÞ ¼ �Vj�; 16 j6 d;

r0nsþdþ2ðuÞ ¼ r � ðqvÞ; r1nsþdþ2ðuÞ ¼ 0;

whereVj� 2 Rd is the vector with components ðVjj0 Þ16 j0 6 d . The form að�; �Þ is nonlinear with respect to its
first argument and linear with respect to the second. Here and in the sequel, we use the convention that

semi-linear forms are linear with respect to all arguments on the right of the semicolon.
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3. Stabilized finite element approximation

This section describes the stabilized finite element method used to approximate the flame problem and

how the discrete equations are solved iteratively.

3.1. Standard Galerkin formulation

LetTh denote a conform triangulation of the polygonal computational domain X. OnTh, we define the

finite element space Vh consisting of continuous piecewise affine functions

Vh ¼ fuh 2 C0ðXÞnc 8K 2 Th; uhjK 2 P1ðKÞncg:

Note that the same order of interpolation is used for all physical variables.
In the standard Galerkin approximation, one seeks uh 2 Vh such that

aðuh;uhÞ ¼ 0 8uh 2 Vh: ð6Þ

This method needs to be stabilized in order to cope with (i) advection instabilities due to high Peclet

numbers, (ii) pressure–velocity couplings in the low Mach number regime and (iii) spurious oscillations

near the flame front causing violation of the discrete maximum principle for the species mass fractions and

the temperature. Appropriate stabilizations for the first two effects are rather well-known and will only be

briefly reviewed. The third effect is less classical in flame modeling and will be discussed in more detail.

3.2. Streamline and pressure–velocity stabilization

For the convection dominated, incompressible Navier–Stokes equations, stable finite element discreti-

zations have been derived using least squares control of the discrete pressure gradient, the incompressibility

constraint and the convective derivatives of the dependent variables [4,20,23,24,35]. In this case, energy-
type stability estimates guarantee the well posedness of the discrete problem. In the low Mach number case,

there are no corresponding estimates, but even so the formulation has proved to perform well in several

applications [1,7]. The stabilized formulation for low Mach number flames reads: find uh 2 Vh such that
aðuh;uhÞ þ bsdðuh;uhÞ ¼ 0 8uh 2 Vh; ð7Þ

with bsdðuh;uhÞ ¼
P

K b
sd
K ðuh;uhÞ and the local stabilizing terms given by

bsdK ðuh;uhÞ ¼
Xns�1
l¼1

dsdl ðelðuhÞ; bl � rulÞK þ dsdnsþ1ðensþ1ðuhÞ; bnsþ1 � runsþ1ÞK

þ
Xnsþdþ1
j¼nsþ2

dsdj ðejðuhÞ; bj � ruj þrunsþdþ2ÞK þ dsdnsþdþ2ðensþdþ2ðuhÞ;r � uvÞK ;

with ð�; �ÞK denoting the L2ðKÞ inner product. The components of the test function uh are denoted by
ðu1; . . . ;unsþdþ2Þ and uv ¼ ðunsþ2; . . . ;unsþdþ1Þ are the test functions associated with velocity. The stabil-
ization is fully consistent since the exact solution u of (4) also satisfies the approximate problem (7). The
stabilizing coefficients are evaluated elementwise from the expressions

dsdi ¼ 2jbij
h

�
þ li
h2

��1

; 16 i6 nsþ d þ 1; ð8Þ

and dsdnsþdþ2 ¼ 4hjqvj. Here, h is the mesh size, li ¼ di for the species, lnsþ1 ¼ k for the temperature and
lnsþ1þj ¼ l for the d velocity components.
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3.3. Nonlinear crosswind diffusion

Despite its least squares control of streamline derivatives and pressure–velocity coupling, the above

method fails to produce a numerical solution satisfying a discrete maximum principle (DMP). More pre-

cisely, the species and temperature profiles exhibit minima which sometimes lie significantly below physi-

cally acceptable values. This difficulty is particularly severe in combustion problems where negative mass

fractions may render the chemistry production terms completely meaningless. In order to quench DMP

violations, we introduce an additional stabilization term based on crosswind diffusion (CD). In the liter-

ature, such term, also called shock or discontinuity capturing term, has been investigated following two

approaches:
• the linear approach where the amount of crosswind diffusion does not depend on the approximate so-

lution. In order to preserve accuracy, the crosswind diffusion scales as h3=2. This approach has been in-
troduced in [25] and further extended in [27,34];

• the nonlinear approach where the amount of crosswind diffusion depends on the approximate solution.

In this context, a new nonlinear crosswind operator has been investigated recently in [2]. In particular,

for linear advection–diffusion equations discretized on strictly acute meshes, a DMP was rigorously pro-

ven.

In the present work, we adapt to flame models the nonlinear approach derived in [2] for linear advection–
diffusion problems. Nonlinear crosswind diffusion is considered for the temperature and species equations.

The fully stabilized Galerkin approximation now reads: find uh 2 Vh such that

aðuh;uhÞ þ bsdðuh;uhÞ þ bcdðuh;uhÞ ¼ 0 8uh 2 Vh; ð9Þ

with bcdðuh;uhÞ ¼
P

K b
cd
K ðuh;uhÞ and

bcdK ðuh;uÞ ¼
Xns�1
i¼1

dcdi ðuhÞðb
?
i � ruh;i; b?

i � ruiÞK þ dcdnsþ1ðuhÞðb
?
nsþ1 � ruh;nsþ1; b

?
nsþ1 � runsþ1ÞK ;

where uh ¼ ðuh;1; . . . ; uh;nsþdþ2Þ. The bilinear form ðb?
i � r�; b?

i � r�Þ corresponds to diffusion in the hyper-
plane orthogonal to bi.
The crosswind diffusion parameter takes the form

dcdi ðuhÞ ¼ dsdi fiðuhÞ; 16 i6 nsþ 1;

where

fiðuhÞ ¼ min
jeiðuhÞj

eiðuhÞ2 þ ðcb?
i � ruh;iÞ2

� �1=2 ; ch1=2
0
B@

1
CA: ð10Þ

All the quantities are evaluated elementwise. The numerical parameters c and c are set to 1 and 0.5, re-
spectively. The nonlinear term in (10) has been introduced in [2] as a heuristic simplification of the theo-

retical crosswind diffusion operator guaranteeing a DMP for linear advection–diffusion problems. The
linear term is mainly active at the flame front where nonlinear effects are dominant. Indeed, in regions

where the flame front is practically orthogonal to streamlines, we have b?
i � ruh;i � eiðuhÞ and therefore, the

nonlinear contribution alone would yield a first-order isotropic viscosity resulting in excessive smearing of

the flame front. Although concessions to practicality have been made in the design of the functions fiðuhÞ
and a DMP is not guaranteed on all meshes, our numerical experiments indicate that undershoots are

practically eliminated on the finer meshes. This point will be further discussed in Section 5.3. We also point

out that the functions fiðuhÞ satisfy two important properties:
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• 06 fiðuhÞ6 1, so that the amount of crosswind diffusion is always lower than that of streamline diffusion;
• fiðuhÞ ¼ 0 if eiðuhÞ ¼ 0 thus preserving consistency of the discrete problem.

3.4. Newton’s method

The discrete flame equations resulting from the stabilized Galerkin formulation (9) read

F ðUhÞ ¼ 0; ð11Þ

where Uh 2 RNh are the nodal components of the discrete solution uh, Nh is the dimension of Vh and F a
nonlinear mapping from RNh to RNh . An approximate solution to (11) is obtained using a damped Newton�s
method in the form

JkðUkþ1
h � Uk

h Þ ¼ �kkF ðUk
h Þ:

The damping parameter kk (06 kk 6 1) is evaluated as described in [17]. The matrix Jk 2 RNh;Nh is an ap-

proximation to the Jacobian matrix ðoF =oUhÞðUk
h Þ. The matrix Jk is sparse and is computed numerically

using perturbed function evaluations. All of its entries, resulting both from spatial and nonlinear local

couplings, are retained and stored in compressed form. At each Newton step, the linear system is solved

approximately using BiCGStab and a Gauss–Seidel preconditionner blocked at the node level. On struc-

tured meshes, larger blocking is also used, e.g., at the row level. Convergence of Newton�s method is
achieved when the rescaled Euclidean norm of the update vector Ukþ1

h � Uk
h is less than some prescribed

tolerance (typically 10�5).

In order to bring the initial solution estimate into the convergence domain of Newton�s method, a time
marching algorithm is employed. A discontinuous Galerkin method of degree 0 in time is used resulting in a

backward Euler scheme: given unh, find u
nþ1
h 2 Vh such that

ðunþ1h � unh;uhÞ þ snðaðunþ1h ;uhÞ þ bsdðunþ1h ;uhÞ þ bcdðunþ1h ;uhÞÞ ¼ 0 8uh 2 Vh;

where sn is the time step. These equations are treated in a fully implicit fashion and are solved approxi-
mately using Newton�s method. For transient iterations, Newton�s method generally converges within a
couple of iterations. Starting with a converged solution on a coarser mesh interpolated onto the current

mesh, fifty time steps are typically performed before switching to the steady Newton iteration.

4. Adaptive mesh generation

Once a numerical solution has been obtained on a given mesh, a key issue is to determine in a reliable

way whether this solution is acceptable. In other words, one wishes to make sure that the error concerning
physical quantities of interest has been brought below a prescribed tolerance. If this is not the case, one also

wishes to use the current numerical solution to generate a new computational mesh on which an improved

approximation to the exact solution can be obtained. The dual weighted residual method offers a suitable

theoretical framework to achieve these goals. In this section, we highlight the main ideas underlying the

method and discuss its practical implementation in the context of flame problems.

4.1. The dual weighted residual method

The dual weighted residual method uses nonlinear optimal control techniques to estimate a given

functional of the numerical error in terms of local residuals of the approximate solution. The residuals are

weighted by coefficients resulting from a linearized dual problem providing information on where the error
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is actually generated. We refer to [6] for a recent review of the theoretical framework with various numerical

examples.

Let Wð�Þ be a user specified functional defined on the solution space V representing some quantity of
physical interest, e.g. in combustion applications, fuel mass fraction, temperature or a pollutant flux av-

eraged over a region where measurements are performed. We assume that the functional W is differentiable
and denote by W0ð�; �Þ its derivative. Similarly, for a semi-linear form að�; �Þ which is differentiable with
respect to its first argument, we denote by a0ð�; �; �Þ its derivative.
We present the dual weighted residual method in an abstract setting and will discuss the validity of the

assumptions for flame problems further below. We assume that the continuous problem (4) and the discrete

problem (9) are well posed. Let u and uh denote their respective solutions and let e ¼ u� uh be the error. We
introduce the fully stabilized semi-linear form asd=cdð�; �Þ ¼ að�; �Þ þ bsdð�; �Þ þ bcdð�; �Þ and assume that
(h1) the semi-linear form asd=cdð�; �Þ is differentiable.

We then introduce the linearized dual problem: find z 2 V such that
Z 1

0

a0sd=cdðuh þ se;u; zÞ ds ¼
Z 1

0

W0ðuh þ se;uÞ ds 8u 2 V ; ð12Þ

and assume that

(h2) the linearized dual problem (12) is well posed.

In order to obtain an error representation in terms of the dual problem (12), we assume that

(h3) the discrete problem (9) is consistent, i.e., the exact solution u of (4) satisfies asd=cdðu;uhÞ ¼ 0
8uh 2 Vh.
These assumptions lead to the following result [6].

Proposition 4.1. Assuming (h1)–(h3), we have the error representation

WðuÞ � WðuhÞ ¼ min
uh2Vh

asd=cdðuh; z� uhÞ; ð13Þ

where z is the solution of the linearized dual problem (12).

We next split the right member of (13) as a sum over the mesh triangles of a local residual of the ap-

proximate solution uh weighted by a coefficient depending on the local regularity of the dual solution z. To
this purpose, we make the following two assumptions:
(h4) the finite element space Vh has optimal interpolation properties: there exists a dense subspace W of V

with a local seminorm j � jW ;K , an interpolation constant ci and an interpolation operator ih : W ! Vh such that

8w 2 W 8h; 8K 2 Th;

kw� ihwkK þ hKkrðw� ihwÞkK þ h1=2K kw� ihwkoK 6 cih2K jwjW ;K ;
ð14Þ

where oK is the boundary of K;
(h5) the solution of the linearized dual problem (12) is in W .

Proposition 4.2. Assume (h1)–(h5). For 16 l6 nc and K 2 Th, define the weights

xl
K ¼ cihK jzljW ;K ; ð15Þ

where z ¼ ðz1; . . . ; zncÞ is the solution of the linearized dual problem (12). We then have the a posteriori error
estimate

jWðuÞ � WðuhÞj6
X
K2Th

E0K
�

þ E1K þ EsdK þ EcdK
�
; ð16Þ
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with

E0K ¼
Xnsþdþ2
l¼1

hKkelðuhÞkKxl
K ;

E1K ¼
Xnsþdþ1
l¼1

h1=2K ½r1l ðuhÞ�
�� ��

oK
xl
K ;

EsdK ¼
Xnsþdþ1
l¼1

1

2
hKkelðuhÞkKxl

K þ
Xd
j¼1
hKcKkensþjþ1ðuhÞkKxnsþdþ2

K þ hKc0Kkensþdþ2ðuhÞkK
Xd
j¼1

xnsþjþ1
K ;

EcdK ¼
Xnsþ1
l¼1

1

2
hKkb?

l � ruh;lkKxl
K ;

where ½�� is the jump across oK, cK ¼ 1=ð2jqhvhjK þ l=hKÞ, qh and vh are the discrete density and velocity
evaluated from uh and c0K ¼ 4jqhvhjK .

Proof. Upon choosing uh ¼ ihz in (13), splitting integrals over elements, integrating by parts the first-order
residuals r1l ðuhÞ and using the interpolation inequality (14), the standard Galerkin part aðuh; z� ihzÞ is
readily estimated by

P
K2Th

ðE0K þ E1KÞ. On the other hand, using (8) we get dsdi h=bi6 ð1=2Þ. Therefore,
owing to the fact that the CD operator is such that fiðuhÞ6 1, the stabilizing terms bsdðuh; z� ihzÞ and
bcdðuh; z� ihzÞ are readily estimated by

P
K2Th

ðEsdK þ EcdK Þ. �

The validity of assumptions (h1)–(h5) in the context of flame modeling requires some discussion. (h4) is a
classical property of finite element interpolation valid for instance on regular meshes with the Sobolev space

W ¼ H 2ðXÞ and jwjW ;K ¼ ð
P
16 j6 j0 6 d kojj0wk

2
KÞ
1=2
. (h3) is also satisfied since both streamline and crosswind

diffusion terms vanish for the exact solution. Concerning (h1), one potential difficulty is the use of absolute

values in the stabilizing coefficients. However, such singularities often occur in regions of low physical

interest and should have a minor impact on the error estimator. Absolute values can also be regularized.

Assumptions (h2) and (h5) are more difficult to establish mathematically since the adjoint solution z may
only exist in a weak sense. Nevertheless this is not too critical since in practical implementations one

considers a finite-dimensional approximate dual problem and its solution usually exhibits more regularity.
In addition, the discrete dual problem may be interpreted as a stabilized approximation of a formal dual

problem.

For piecewise linear finite elements and constant diffusion coefficients, the quantities elðuhÞ can be re-
placed by r0l ðuhÞ in the error indicator E0K . Furthermore, the residual terms should be dominated by the
jump terms E1K [6,14]. The stabilizing contributions E

sd
K and EcdK should also be small at least on the finer

meshes. These issues will be further investigated in Section 5.

4.2. Practical implementation

Concessions to practicality need to be made in order to use the theoretical results of Section 4.1 for

adaptive mesh generation in combustion applications.

Owing to the nonlinear character of the original problem (4), the linearized dual problem (12) depends
on the exact solution u. Therefore, we consider the following approximate dual problem: find ~zz 2 V such
that

a0sd=cdðuh;u;~zzÞ ¼ W0ðuh;uÞ 8u 2 V ; ð17Þ
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which results from (12) by using the approximate quadrature
R 1
0
f ðsÞ ds ’ f ð0Þ. An error representation can

also be obtained directly from the dual problem (17) [6]. It involves the minimal residual as in (13) plus a

remainder term which is quadratic in the error. This term may be viewed as a measure of the nonlinearities

of the problem and should be small whenever the approximate solution uh is close to the exact solution u.
Since (17) is posed in the infinite-dimensional space V , we need to consider a discrete version of the

approximate dual problem. The simplest approach is to use a Galerkin method on Vh so that we now seek
~zzh 2 Vh such that

a0sd=cdðuh;uh;~zzhÞ ¼ W0ðuh;uhÞ 8uh 2 Vh: ð18Þ

More elaborate strategies include considering approximations to ~zz obtained by a higher order method or on
a finer mesh and are discussed for instance in [6]. The present approach offers the advantage that it does not
increase memory size requirements which in combustion problems are already at high demand. Another

advantage of (18) is that the transpose of last Jacobian used in Newton�s method can be used as stiffness
matrix in (18).

Second-order derivatives of the approximate dual solution ~zzh need to be evaluated in order to compute
the weights xl

K in (15). These quantities are approximated by second-order divided difference

quotients Dhjj0~zzh, 16 j; j
0
6 d. The a posteriori error estimate (16) is thus used with the approximate

weights

~xxl
hK ¼ h2K

X
16 j6 j0 6 d

ðDhjj0~zzh;lÞ
2

0
@

1
A
1=2

; ð19Þ

the interpolation constant ci being estimated by 1 (which is generally an upper bound).
The adaptive solution algorithm reads:
(A) chose an initial coarse mesh Tð0Þ. Set i ¼ 0;
(B) solve the approximate flame problem (9) on TðiÞ. Let uðiÞ be the solution;
(C) solve the approximate dual problem (18) and evaluate the approximate weights (19). Compute the

quantities E0K , E
1
K , E

sd
K and EcdK and form the local error indicator

gK ¼ E0K þ E1K þ EsdK þ EcdK ;

(D) if the global error
P

K2TðiÞ
gK is below a prescribed tolerance TOL, stop; otherwise, use the local

error indicators gK to generate a new mesh Tðiþ1Þ, set i :¼ iþ 1 and go back to step (B).
Several methods can be designed to generate the new mesh Tðiþ1Þ depending on the type of data structure

considered:

• locally refined triangulations: starting from an initial triangulation derived from a tensor product mesh

of quadrangles of size h0, such meshes consist of triangles belonging to quadrangles of size 2�ph0,
06 p6 P , where P is the number of local refinements already performed. In locally refined triangula-
tions, the local error indicators are conveniently evaluated on the underlying quadrangles which are

marked for refinement or derefinement when the corresponding error indicator lies above or below pre-

scribed thresholds;
• fully unstructured triangulations: the local error indicators are evaluated on the triangles and are used to

define a control function specifying the desired mesh size hðxÞ locally. This function, in turn, can be used
as input for a Delaunay mesh generator [32].

As a final remark, we point out that the extension of the present adaptive mesh methodology to unsteady

problems is not straightforward. The linearized dual problem has to be solved backwards in time, thereby

requiring to store all the discrete solutions during the simulation time, see [10]. A simple situation arises in

quasi-static problems in which the time scales are sufficiently large to keep the mesh fixed for a certain
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simulation time. Once this period has elapsed, a linearized dual problem may be solved, involving either all

the previous discrete solutions or a quasi-steady approximation where only the transpose of the Jacobian

matrix computed at the last time step is considered.

5. Numerical results

We apply the numerical methods described in the previous sections to a methane/air Bunsen flame in
axisymmetric configuration (see Fig. 1). We first specify the chemical model and the boundary conditions.

We then study numerically the adaptive algorithm based on a posteriori error estimates and investigate the

impact of nonlinear crosswind diffusion on numerical results. Solution quality is assessed in terms of overall

flame characteristics, including height, lift off and width and also in terms of undershoots in species and

temperature profiles.

5.1. The Bunsen flame problem

The flame is obtained by flowing a stoichiometric methane/air mixture through a cylindrical tube. The

fuel tube has a radius of 4 mm and a width of 0.5 mm. The inflow velocity profile is parabolic with a peak

velocity of 1.5 m/s. The flame is surrounded by an air coflow given by vcflz ðrÞ ¼ v0ð1� expð�ðr � r0Þ=dÞÞ
with peak velocity v0 ¼ 1 m=s and parameters r0 ¼ 4:5 mm and d ¼ 2 mm. Reactants and air are flown at
room temperature (298 K).

We consider a simplified chemistry model [12] based on the overall reaction

CH4 þ 2O2 ! CO2 þ 2H2O

Three species mass fractions are retained among the dependent unknowns, namely YCH4 , YO2 and Yprod, the
latter associated with the combustion products. Nitrogen is also present in the mixture as an inert dilutant.

Its mass fraction is conveniently evaluated from YN2 ¼ 1� YCH4 � YO2 � Yprod.
The mixture specific heat capacity is assumed to be constant and equal to cpm ¼ 0:323 cal=g=K. The

energy conservation equation is rescaled by cpm. The temperature source term then reads

xT ¼ Q
cpm

Eðq; YCH4 ; YO2 ; T Þ;

where we have introduced

Eðq; YCH4 ; YO2 ; T Þ ¼ ðqYCH4ÞðqYO2Þ
2Aar expð�Ear=ðRucT ÞÞ;

with Q ¼ 11355 cal=g, Aar ¼ 1:01� 1018 (cgs units), Ear ¼ 29100 cal=mol and Ruc ¼ 1:9872 cal=mol=K. On
the other hand, the species source terms are given by

xl ¼ ~mmlEðq; YCH4 ; YO2 ; T Þ; 16 l6 3;

with ~mm1 ¼ �1, ~mm2 ¼ �2mO2=mCH4 , ~mm3 ¼ mprod=mCH4 and mprod ¼ 2mH2O þ mCO2 . The molecular weights are
mCH4 ¼ 16:043, mO2 ¼ 31:9988, mCO2 ¼ 44:01, mH2O ¼ 18:0153 and mN2 ¼ 28:0134 in g/mol. Finally, the
thermal conductivity is given by k ¼ Rl=ðqcpmÞ with Rl ¼ 5:61� 10�8 (cgs units), the shear viscosity by
l ¼ Prk with Pr ¼ 0:7 and the species diffusion coefficients by di ¼ k=ðqLeiÞ with the Lewis numbers set to
LeCH4 ¼ 0:96, LeO2 ¼ 1:1 and Leprod ¼ 0:83.
Boundary conditions are as follows:

• inflow (z ¼ 0): Dirichlet for both velocity components and temperature; flux condition for the species in
the form
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qYlvz þFl � ez ¼ qinvinz Y
in
l ; 16 l6 3;

where the superscript denotes inflow conditions and ez the upward unit vector. For stoichiometric
methane/air flames, we have Y inCH4 ¼ 0:05515 and Y

in
O2

¼ 0:22;
• outflow (z ¼ Z): homogeneous Dirichlet for hydrodynamic pressure and radial velocity; homogeneous
Neumann for axial velocity, temperature and species;

• axis of symmetry and far field (r ¼ 0 and r ¼ R): homogeneous Dirichlet for radial velocity;
homogeneous Neumann for axial velocity, temperature and species.

All the results reported below have been obtained on the computational domain ½0; 3� � ½0; 25� in cm.

5.2. The adaptive algorithm

In this section we investigate numerically the adaptive algorithm discussed in Section 4.2. For the sake of

illustration, we have chosen to control the mean error in methane mass fraction

WðuÞ ¼
Z

x
YCH4 dx: ð20Þ

The control domain is set to x ¼ ½0; 1� � ½0; 1� in cm and covers the entire flame region since flame lengths
are typically 0.9 cm for the present operating conditions. Other error functionals may be easily selected

depending on the user�s specific requirements. The tolerance for the adaptive algorithm was set to

TOL ¼ 10�3. The adaptive algorithm was started from a coarse initial mesh of locally refined type. This
mesh, referred to as level 0, contained 895 nodes and 1617 triangles with 20 elements of size 0.25 mm (half

the tube width) located around the burner lip and a maximal element size of 0.4 cm (see Fig. 2). To bring

the error below the tolerance threshold, three adaptive refinement steps were needed. The corresponding
locally refined meshes will be referred to as levels 1, 2 and 3. We then refined an additional level to obtain a

reference solution permitting us to compare the a posteriori error estimate with the error between the

reference solution and a given numerical approximation. Locally refined meshes at levels 2 and 4 are also

shown in Fig. 2.

The adaptive algorithm has also been investigated on fully unstructured triangulations. Suchmeshes are of

Delaunay type and have been generated using the algorithm described in [32]. Fully unstructured triangula-

tions at levels 0, 2 and 4 are illustrated in Fig. 3. On a given refinement level, the interior control function

specifying the desired element size has been obtained from the a posteriori error estimates computed on the
locally refined mesh where second-order derivatives are easier to evaluate. Error indicators may also be

computed directly on unstructured meshes upon defining appropriate patches around elements. This ap-

proach goes beyond the scope of the present work and will be investigated in a forthcoming paper [3].

The number of degrees of freedom for all the meshes considered is reported in Table 1. For high re-

finement levels, fully unstructured meshes result in less degrees of freedom than locally refined ones (the

ratio is more than two on level 4) because the equilateral triangles in the Delaunay meshes appear to cover

the computational domain more efficiently and because of the sharper transition to the outer coarse mesh.

Fig. 2. Examples of locally refined meshes at levels 0, 2 and 4.
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The numerical solution of the approximate dual problem (18) obtained on the locally refined mesh of

level 0 is presented in Fig. 4. We consider the components associated with methane, temperature, axial

velocity and pressure. Although the data for the dual problem is nonzero for methane only, all the physical

components of the dual solution are important because of the strongly coupled nature of the flame

problem. In particular, refinement of the flame front is mainly driven by temperature and pressure on

coarser meshes while velocity components are active above the burner lip where the flow has stagnation

points. The methane component is also active in the shear flow layer developing from the hydrodynamic

interaction between the jet flow and the air coflow outside the flame. In Fig. 5 we show the dual solution for
level 3. We observe that the dual solution profiles have become much smoother indicating that the theo-

retical assumptions (h2) and (h5) are reasonable as higher resolution is achieved.

The a posteriori error estimate is presented in Fig. 6 as a function of the total number of degrees of

freedom, N , for the locally refined meshes. Similar results are obtained for the fully unstructured meshes. The
overall convergence rate roughly scales as N�1. For uniformly refined meshes, N is inversely proportional

Fig. 3. Examples of fully unstructured meshes at levels 0, 2 and 4.

Table 1

Number of nodes for the locally refined and the fully unstructured meshes at various refinement levels

Level 0 1 2 3 4

Locally refined 895 1694 3568 7728 16,570

Fully unstructured 839 1337 2155 4338 7257

Fig. 4. Dual solution on locally refined mesh of level 0; from left to right: methane, temperature, axial velocity and pressure.

Fig. 5. Dual solution on locally refined mesh of level 3; from left to right: methane, temperature, axial velocity and pressure.
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to h2 and from theoretical estimates valid for simpler problems, one would expect that the error indicator
decrease as N�3=4. Therefore, slightly superconvergence results are observed for the present adaptively

refined meshes. In Fig. 6 we also report estimates of the mean error and the L1 error evaluated using the
numerical solution on level 4, uð4Þ. We plot the quantities j

R
x uð4Þ � uðiÞj and

R
x juð4Þ � uðiÞj for 06 i6 3. We

observe that the a posteriori error estimate never underpredicts the error. The estimate also appears to
be rather sharp since the ratio between the a posteriori estimate and the L1 error is only 1.3 on level 3.
Moreover, we note that the mean error and the L1 error are very similar, thus indicating that the error is
globally of the same sign over the control domain x. Finally, we point out that the three error estimates
exhibit a similar convergence rate on finer meshes.

In Fig. 7 we plot the relative contribution from the different error terms to the a posteriori error estimate.

On finer meshes, the term corresponding to the jump in the gradients, E1K , dominates the error estimate.

Fig. 6. A posteriori error estimate as a function of total degrees of freedom on locally refined meshes; comparison with the mean error

and the L1 error evaluated using the numerical solution on level 4 as reference.

Fig. 7. Relative contribution of error indicators E0K , E
1
K , E

sd
K and E

cd
K as a function of total degrees of freedom on locally refined meshes.
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This result is in agreement with theoretical estimates [6,14]. A significant contribution to this term arises

near the burner lip where the inflow velocity profile exhibits discontinuous normal derivatives. We also

point out that the streamline diffusion contribution, EsdK , is half the lower order residual contribution, E
0
K ,

while the crosswind diffusion contribution, EcdK , is approximately an order of magnitude smaller than the
others on all meshes.

Finally, we present in Fig. 8 contours for temperature, methane, velocity norm and pressure obtained
from the flame solution on level 4. For each physical component, we compare the locally refined and fully

unstructured results and observe very good agreement.

5.3. Impact of crosswind diffusion on solution quality

The numerical results presented in the previous section have been obtained using the nonlinear CD

operator (10) presented in Section 3.3. As already pointed out in Section 3.2, the stabilization for

pressure–velocity coupling is based on the implicit assumption that the flow locally has the same
stability properties as the incompressible Navier–Stokes equations. This assumption is clearly not valid

near the flame front where the density undergoes significant changes. A mathematical study of pres-

sure–velocity stabilization with strong density gradients is beyond the scope of this paper. To avoid

pressure oscillations and smooth the velocity field in zones with strong underresolved temperature

gradients, a linear CD operator is always considered for the momentum equations. To preserve ac-

curacy, such term scales as h3=2. With this modification, the semi-linear form bcdð�; �Þ ¼ 0 is no longer
consistent but its contribution to the a posteriori estimate is expected to be small at least on finer

meshes.
In order to investigate the impact of CD on solution quality, we compare the numerical solutions ob-

tained from three sets of results labelled as follows:

• SD: no CD stabilization, simply fiðuhÞ ¼ 0 for 16 i6 nsþ 1;
• linear: fiðuhÞ ¼ ch1=2 with c ¼ 0:5 for 16 i6 nsþ 1;
• nonlinear: fiðuhÞ given by (10) for 16 i6 nsþ 1.
On coarser meshes, CD stabilization is critical in improving convergence rates. The SD method failed to

converge on the fully unstructured mesh of level 0, with a temperature undershoot in the Newton iterates of

168 K. Before further discussion of computational costs, we investigate solution quality. We first consider
overall flame characteristics such as height, lift off and width and then undershoots in species and

temperature profiles.

Fig. 8. Comparison of the flame solution obtained on the locally refined (left) and fully unstructured (right) meshes of level 4; from top

left to bottom right: temperature, methane, velocity norm and pressure.
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Flame heights, defined as point on the z-axis where half of the injected combustible has been consumed,
are reported in Table 2. On level 4, all the numerical solutions agree within 0.1 mm, i.e., within 1%, in-

dependently of the type of mesh and CD operator. However, important fluctuations due to underresolution

are observed on coarse meshes. As expected, CD methods yield shorter flames than the SD method on

coarse meshes because upstream flame propagation is enhanced by diffusion and more diffusive flames

stabilize closer to the premixed fuel jet. The flame lift off, defined as the lowest z-coordinate where the
temperature reaches 1000 K, is presented in Table 3. Conclusions are similar to those drawn for the flame

height. We note however a much stronger sensitivity to spatial resolution, the ratio between lift off at level 0
and 4 being roughly 3. In Table 4, we consider the radial flame width at z ¼ 0:4 mm. Drawing a horizontal
line at z ¼ 0:4 mm, we denote by xl10% the position on the left side of the flame where the heat production
reaches ten percent of its maximum value and by xr10% the corresponding point on the right side. The flame
width is then evaluated as xr10% � xl10%. On coarse meshes, flame widths are expected to be larger when CD is
included, but on level 4 flame widths agree to within a few percent.

Fig. 9 compares temperature profiles computed on fully unstructured meshes at levels 1 and 2. Left plots

are obtained with nonlinear CD and right ones with SD only. On level 1, the SD method predicts a flame

front with a somewhat irregular shape near the flame tip whereas the nonlinear CD method yields a more

Table 2

Flame height computed on various meshes

Mesh Locally refined Fully unstructured

Method SD Linear Nonlinear SD Linear Nonlinear

Level 0 0.77 0.70 0.74 – 0.64 0.5

Level 1 0.86 0.83 0.85 0.87 0.79 0.83

Level 2 0.89 0.87 0.88 0.88 0.85 0.87

Level 3 0.89 0.89 0.89 0.90 0.89 0.89

Level 4 0.89 0.88 0.89 0.90 0.89 0.90

Table 3

Flame lift off computed on various meshes

Mesh Locally refined Fully unstructured

Method SD Linear Nonlinear SD Linear Nonlinear

Level 0 0.072 0.085 0.080 – 0.047 0.095

Level 1 0.043 0.048 0.044 0.044 0.067 0.047

Level 2 0.031 0.031 0.031 0.032 0.033 0.032

Level 3 0.026 0.027 0.027 0.027 0.028 0.027

Level 4 0.024 0.024 0.025 0.026 0.026 0.026

Table 4

Radial flame width at z ¼ 4 mm computed on various meshes
Mesh Locally refined Fully unstructured

Method SD Linear Nonlinear SD Linear Nonlinear

Level 0 0.077 0.088 0.075 – 0.11 0.11

Level 1 0.049 0.051 0.052 0.064 0.084 0.064

Level 2 0.052 0.052 0.052 0.056 0.059 0.057

Level 3 0.051 0.050 0.051 0.053 0.052 0.050

Level 4 0.052 0.051 0.052 0.053 0.051 0.053
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conical shape. On level 2, both methods capture a similar shape for the flame front. We also observe how

the flames move closer to the burner lip as resolution is improved.

We next study how well the different CD operators handle undershoots in the solution. In Fig. 10 we

present the maximal undershoot for temperature and methane as a function of the total number of degrees

of freedom on the locally refined meshes. The methane undershoot is quenched as soon as the mesh is
refined. This result is coherent with the present choice of the error functional where methane is the targeted

quantity. On the other hand, temperature undershoots at physically unacceptable values persist with the SD

method even on finer meshes. Undershoots for temperature, methane and product obtained from the three

CD operators on all meshes are reported in Tables 5–7. For fully unstructured meshes on level 0, significant

temperature undershoots are present even with CD stabilization, a phenomenon not observed for locally

refined meshes. Temperature undershoots are quenched at level 2 or 3 depending on the type of mesh. For

methane, the linear and nonlinear CD operators yield similar results while the nonlinear one appears to be

more effective to wipe out product undershoots.
The geometric location of temperature undershoots is presented in Fig. 11 (left) for the solution obtained

with nonlinear CD on the locally refined mesh of level 4. The undershoots, 1 K in magnitude, are present

both in the flame front and in the shear layer between inner and outer jets. Fig. 11 (right) shows which

contribution to the minimum in Eq. (10) is active with black triangles corresponding to the linear one. As

expected, the nonlinear contribution is mainly active in the convective layer outside the flame while the h3=2

term dominates in most triangles covering the flame front. The linear CD method is too diffusive in the

Fig. 9. Comparison of computed temperature on fully unstructured meshes of level 1 (top) and level 2 (bottom) using the nonlinear

CD operator (left) and the simple SD method (right).
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Fig. 10. Undershoots for different methods as a function of total degrees of freedom; left: methane, right: temperature; locally refined

meshes.

Table 5

Temperature undershoots computed on various meshes

Mesh Locally refined Fully unstructured

Method SD Linear Nonlinear SD Linear Nonlinear

Level 0 237 297 296 – 256 277

Level 1 255 298 297 239 280 271

Level 2 262 298 297 258 292 293

Level 3 265 298 297 255 297 297

Level 4 265 297 297 268 298 297

Table 6

Methane undershoots computed on various meshes

Mesh Locally refined Fully unstructured

Method SD Linear Nonlinear SD Linear Nonlinear

Level 0 )0.001 )0.003 )0.002 – )0.0029 )0.0045
Level 1 )3.8E) 6 )2.4E) 6 )2.2E) 6 )1.3E) 5 )4.6E) 6 )2.6E) 6
Level 2 )1.2E) 6 )7.6E) 7 )7.4E) 7 )1.1E) 6 )7.9E) 7 )4.2E) 7
Level 3 )1.7E) 6 )6.3E) 7 )2.6E) 7 )7.2E) 7 )1.3E) 7 )2.1E) 7
Level 4 )1.1E) 6 )3.0E) 7 )1.3E) 7 )6.2E) 7 )1.4E) 7 )2.6E) 7

Table 7

Product undershoots computed on various meshes

Mesh Locally refined Fully unstructured

Method SD Linear Nonlinear SD Linear Nonlinear

Level 0 )0.009 )0.0001 )0.0003 – )0.012 )0.0029
Level 1 )0.006 )0.0005 )7.8E) 5 )0.008 )0.0055 )0.0026
Level 2 )0.005 )0.0001 )6.6E) 5 )0.005 )0.0030 )0.00047
Level 3 )0.005 )0.0002 )2.5E) 5 )0.005 )0.0012 )0.0001
Level 4 )0.005 )0.0002 )7.2E) 5 )0.004 )0.0002 )8.7E) 5

E. Burman et al. / Journal of Computational Physics 188 (2003) 472–492 489



downstream region, thereby producing an excessive smearing of the temperature profile. On the other hand,

the nonlinear CD method offers a reasonable compromise between resolution of the downstream thermal

layer and undershoot quenching.

5.4. Computational costs

We first assess the relative cost of the adaptive mesh procedure with respect to the cost of obtaining a

discrete flame solution on a given mesh. The former CPU cost is referred to as CPUadapt and the latter as

CPUflame. Table 8 presents the ratio CPUadapt=CPUflame (in %) observed on the locally refined meshes of
levels 1–3. We observe that this ratio is of the order of a few percent at the most, thereby confirming that

the relative cost of mesh adaption based on the dual weighted residual method is marginal. Indeed,

CPUadapt mainly stems from the solution of a single linear system, as opposed to CPUflame which involves

solving the nonlinear system of Eq. (11) with Newton�s method.
We finally assess the computational overhead associated with CD operators, linear or nonlinear. To this

purpose, we use the SD solution on level 2 as an initial estimate to obtain a converged solution with linear

or nonlinear CD. We take 75 time steps and then solve the stationary system. Table 9 reports the total

number of Jacobian evaluations and linear algebra cost. The latter is estimated as the number of BiCGStab

iterations times the square of the total degrees of freedom and is normalized by the linear algebra cost for

Fig. 11. Locally refined mesh of level 4; left: regions where the temperature exhibits an undershoot of 1 K; right: the linear CD

operator dominates the nonlinear term in the black zone.

Table 8

Cost of mesh adaption procedure normalized by the cost of solving the flame equations on refinement levels 1–3 for the SD method

Level 1 2 3

CPUadapt=CPUflame (in %) 2.8 1.9 0.7

Table 9

Comparison of computational cost for linear and nonlinear CD

Mesh type Locally refined Fully unstructured

Method Linear Nonlinear Linear Nonlinear

Jacobians 76 83 80 85

Linear algebra cost 1.22 2.56 0.74 0.87
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achieving convergence with the SD method on the locally refined mesh of level 2 starting from the con-

verged solution on level 1. On locally refined meshes, the linear algebra overhead of the nonlinear method is

significant but is only slightly higher than that of the linear method on fully unstructured meshes. On the

other hand, the total number of Jacobians is comparable for all cases, although their evaluation is cheaper

on fully unstructured meshes which have less degrees of freedom than locally refined ones.

6. Conclusions

In this paper we have derived a stabilized finite element discretization for low Mach, steady, laminar

flames. The adaptive mesh methodology relies on the dual weighted residual method. We presented an

abstract analysis of the method including SD and CD contributions to the error indicators and discussed

the validity of the underlying assumptions for flame problems. Numerical results have been presented for a

stoichiometric methane/air Bunsen flame with simple chemistry. The adaptive algorithm performs well on

both locally refined and fully unstructured meshes, the latter achieving similar accuracy with less degrees of

freedom. In addition, various CD operators have been compared in terms of solution quality and com-
putational costs. The SD method without any CD stabilization produces physically unacceptable tem-

perature undershoots and has severe convergence difficulties especially on coarse, fully unstructured

meshes. Linear and nonlinear CD methods yield similar results in terms of solution quality, the latter being

more expensive on locally refined meshes but yielding a sharper resolution of the downstream thermal layer.

Forthcoming work includes extension of the present methodology to Bunsen flames with complex chem-

istry.
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